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Browsing through International Journal of Lexicography archives and other metalexicographic work one 

could easily notice that sampling techniques are generally neglected by metalexicographers, rarely 

described exhaustively by the authors themselves and almost never discussed, even though numerous 

researchers sample in order to make generalizations about the whole dictionary text, usually too large to 
be studied in its entirety. Not rarely samples consisting of one stretch only, usually selected judgmentally, 

are used to draw inferences about the whole dictionary text and serve as a basis for statistical analysis, 

which produces results of uncontrolled reliability. This study aims both at exposing the pitfalls of 

currently used sampling techniques and at proposing probability sampling instead. 

Two basic probability sampling schemes were examined: simple random and stratified selection of pages. 

Censuses based on three dictionaries, three characteristics examined in each one, confirmed my concerns 

regarding one-stretch sampling. Simple random selection of pages produced, as expected, far more 

satisfying results in virtually all the cases. This can be, however, bettered by stratification in case of entry-

based characteristics in larger dictionaries. Page-based characteristic, mean number of entries per page 

in this study, did not benefit from stratification. The smallest of my dictionaries presented a range of 

problems mostly connected with stratified sampling. Furthermore, empirical evaluation of sampling 
techniques proposed in Coleman – Ogilvie (2009) demonstrated that randomization within strata is also 

crucial. 

 

1. Background 

 

Browsing through International Journal of Lexicography archives and other 

metalexicographic work one could easily notice that sampling techniques are generally 

neglected by metalexicographers, rarely described exhaustively by the authors themselves and 

almost never discussed, even though numerous researchers sample in order to make 

generalizations about the whole dictionary text, usually too large to be studied in whole. A lot 

of energy is put into analyzing the samples, but very little thought seems to be given to the 

mechanisms of sample selection themselves. Not rarely samples consisting of one stretch 

only, usually selected judgmentally, are used to draw inferences about the whole dictionary 

text and serve as a basis for statistical analysis, which produces results of uncontrolled 

reliability. Such a lack of good practice is even less justifiable in view of the fact that 

dictionaries are fairly good sampling objects offering numerous possibilities of randomization 

and easy access to each and every element of their structure at virtually no cost. 

 

This study aims both at exposing the pitfalls of currently used sampling techniques and at 

proposing probability sampling instead, i.e. techniques where each dictionary entry stands a 

chance of being included with a probability that can be determined. What makes these 

techniques different from predominantly intuitive approaches adopted by numerous 

researches is its grounding in probability theory, which makes it possible to control the 

reliability of the results. 

 

Two basic schemes will be examined: simple random sampling, which in our case means 

                                                
*  Fout! Alleen hoofddocument.I would like to thank Robert Lew for inspiration, all the help and comments 

on this paper as well as Michał Jankowski and Tadeusz Piotrowski for making the SGML code extracts available 

for research purposes. 
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simply taking a random selection of pages from the whole dictionary; and stratified sampling, 

which consists in dividing the dictionary into non-overlapping parts called strata – e.g. letters 

or parts edited by different editors – and selecting a simple random sample from each one of 

them. Because pages are the only elements numbered in a paper dictionary, and the researcher 

may be interested in parameters counted on an entry basis, the pages drawn will sometimes 

have to be treated as clusters of entries. Therefore two additional sampling schemes will have 

to be considered: cluster sampling and stratified-cluster sampling. Based on these samples, 

estimators will be constructed. Those are functions of the sample that are supposed to yield 

some knowledge about dictionary parameters. Good estimators should be unbiased (meaning 

that there should be no difference between the estimator‟s expected value and the true value 

of the parameter), consistent and efficient. To assess efficiency, I will use confidence intervals 

(CIs) which with 1-α probability contain the true value of the parameter in question.  

 

2. Current sampling practice 

 

Most of the samples in current metalexicographic research are judgmental one-stretch samples 

based on what metalexicographers intuitively consider reliable and representative, usually 

without having tested this representativeness in any way. There is a myth that letters in the 

middle of the alphabet are best suitable to serve as a sample (see e.g. Miyoshi 2007:31) 

because lexicographers must have settled to regular modus operandi by the time they reach 

them. In other cases sample selection is not justified at all (e.g. Cormier 2008). 

 

If one-stretch sampling were to yield satisfactory results, the characteristics studied would 

have to be evenly distributed throughout the whole dictionary which is almost never true due 

to changing or inconsistent lexicographic policies (de Schryver 2005, Coleman – Ogilvie 

2009:2), differences in individual editorial practices in multi-editor works (Ogilvie 2008), 

alphabet fatigue (Zgusta 1971:352) An excellent example of inconsistencies and therefore a 

compelling argument against one-stretch sampling was given by de Schryver (2005). But even 

if lexicographers were perfectly consistent, one-stretch sampling is still very tricky as 

differences between dictionary parts may be due to the inherent properties of the lexicon of a 

given language.  

 

Very few studies have employed techniques more elaborate than one-stretch sampling. Yet, 

even if multiple stretches are used, the sample selection procedure remains undocumented, 

even in the works of such prominent authors as Rundell (2006) or Bogaards (2008).  

 

Systematic sampling where a starting point is selected and then every x-th page is sampled is 

occasionally found (e.g. in Cormier – Fernandez 2005). This method, while having an 

intuitive advantage of ensuring balanced coverage of the whole alphabet offers only limited 

potential for randomization and it must be borne in mind that „[t]he theory of probability (...) 

and current theories of statistical inference have little to say regarding the behavior of non-

random samples, and therefore little to say regarding the confidence with which we can draw 

inferences from them‟ (Freeman 1963: 166). 

 

Examples of techniques other than systematic sampling are scarce. Worth mentioning are two 

studies by Xu, both using a similar sampling technique i.e. random sampling with 

stratification (including post-hoc stratification) according to part of speech, word frequency 

1259

                             2 / 12                             2 / 12



  
Section 9. Lexicological Issues of Lexicographical Relevance 

and markedness of vocabulary (Xu 2008) and word frequency and part of speech (Xu 2005), 

and Sarah Ogilvie‟s 2009 study of the treatment of loanwords. Her complex design resembles 

stratified sampling, ensures good coverage of the alphabet and thus avoids bias towards a 

given donor language. Nonetheless the complexity of the design, including a series of 

conditional probabilities as a result of „alternating between „number of pages‟ and „page 

number‟‟ (Sarah Ogilvie, personal communication), makes it difficult to construct a 

theoretical model in order to check whether unbiased estimation is attainable in this case. 

 

To the best of my knowledge only one paper to discuss sampling methodology appeared in 

print so far: Coleman – Ogilvie (2009). It stresses the importance of covering the whole 

alphabet and advocates stratification by letters and by editor in multi-editor works. Based on a 

census of Hotten‟s 1859 dictionary, the researchers empirically evaluate sampling the first 

1000 and the first 10% entries of the entire dictionary as well as the first 50 entries and the 

first 10% of entries under each letter postulating the use of the later two as appropriate. 

However, these methods are not random, they exhibit a likely bias towards the beginning of 

each letter and additionally the third one due to differences in letter size will over-represent 

„smaller‟ and under-represent „bigger‟ letters. Unfortunately, no proposals are given to balance 

this over- and under-representation by constructing an appropriate estimator formula. 

 

3. The study 

 

As already mentioned before, the current study will propose and empirically evaluate 

sampling techniques that would allow to easily construct unbiased or at least asymptotically 

unbiased
1
 estimators. I will also examine which techniques are most efficient i.e. which 

produce a possibly narrow confidence interval for the parameter studied. 

  

I assume that a paper dictionary will be sampled and the discussion that follows is most 

directly relevant to paper dictionary sampling. This does not mean that the result will not be 

applicable to electronic dictionary sampling but because there is no page numbering, the 

designs will have to be modified. All our samples will be selected using a random number 

generator, with equal probabilities and without replacement. As pages are the only elements 

numbered in a paper dictionary, it is pages that will be drawn. Parameters characterizing 

pages (e.g. the number of entries per page) may be of interest, but more frequently researchers 

will be interested in parameters counted on an entry basis (e.g. mean number of examples per 

entry). In such cases, pages will be considered clusters of entries, which has its consequences 

for estimator formulas. Readers interested in mathematical details shall consult Barnett (1974) 

or Deming (1950). Additionally, I assume that cost (i.e. time) of the procedure of drawing the 

sample is negligible regardless of the method. Sample size (10%) and α-level (0.05) will be 

kept constant in all random methods for illustrative purposes. 

 

All the samplings are supposed to be doable manually, but because of the large number of 

samples examined and censuses performed I am using electronic SGML-tagged versions of 

three existing paper dictionaries: The New Kościuszko Foundation Dictionary (NKFD) 

English-Polish, Webster‟s Revised Unabridged Dictionary (Webster), and New English-Polish 

Dictionary (PiotrSal). The former two are relatively large whereas PiotrSal is a small 

                                                
1 Estimators with a known bias that approaches zero when sample size increases.  
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dictionary. In the NKFD and PiotrSal files pagination tags were added manually, while 

Webster has already been provided with pagination. As these versions may differ slightly from 

their printed equivalents, the results do not apply directly to the aforementioned dictionaries. 

This shall not, however, affect the results concerning sampling techniques in any way.  

 

The characteristics examined have to be easily searchable automatically, thus dependent on 

tagging. I will estimate the total number of entries, as it is often used as an auxiliary statistic 

and it will serve as an example of a page-based parameter. Apart from that, a number of entry-

based parameters will be examined. These include „obsolete‟ labeling and per-entry rate of 

quotations in Webster, per-entry rate of equivalent disambiguators and „formal‟ labeling in 

NKFD, mean number of equivalents per entry and „US‟ labeling in PiotrSal. While some of 

them might be claimed to be at least partially dependent on inherent characteristics of the 

lexicon, others rely solely on lexicographers‟ modus operandi e.g. quotation provision.  

 

4. Results and discussion 

 

For all of the above mentioned characteristics censuses have been performed and within-letter 

means have been calculated and compared with the overall dictionary mean. None of the 

dictionaries exhibits heavy concurrent over- and under-treatment in terms of mean number of 

entries per page but the distributions are far from uniform. Entry-based characteristics display 

more glaring inconsistencies. As will be shown, all of them can be balanced using 

randomization. 

 

 
Figure 1. Mean number of entries per page in Webster and PiotrSal 

  

First, let me consider mean number of entries per page. Figure 1 presents the distribution of 

mean number of entries per page throughout the alphabet (bars), the true means (black 

continuous lines) and simple random sampling CIs (gray dashed lines) for Webster and 

PiotrSal.  
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true 

mean

min 

mean

max 

mean

max 

distance

min 

distance simple random CI

CI 

length stratified CI

CI 

length

Webster 67,06 41,00 X 77,81 Sup 26,06 X 0,02 D 65,53 69,87 4,34 65,68 70,72 5,04
NKFD 42,58 35,66 R 49,67 Z 7,09 Z 0,00 P 39,65 42,98 3,33 41,05 44,42 3,37
PiotrSal 36,26 24,50 K 36,86 V 11,76 K 0,24 Q 35,52 39,11 3,59 33,51 34,88 1,37  

Table 1. Mean number of entries per page - a summary 

 

Table 1 summarizes details for the estimation of mean number of entries per page in these dic-

tionaries and in NKFD. One may see that in both Webster and PiotrSal inaccurate choice of 

one-stretch sample might result in under- or overestimation on the order of a third of the true 

mean (letters X and K in Webster and PiotrSal respectively). In NKFD the maximum distance 

between the true mean and within-letter means is not that large, nonetheless randomization 

helped to achieve better results and narrow down the scope of results. In all three cases the 

true value of the parameter is contained in the CI. The CI length ranges between three and 

four entries, which I personally would consider satisfactory. A closer look at Table 1 reveals 

that in neither NKFD nor Webster did stratification manage to produce more efficient esti-

mates: the CIs for stratified sampling are slightly wider. Stratification in PiotrSal proved prob-

lematic as, even though the CI is substantially narrower than in simple random sampling, it 

does not include the true mean (therefore those cells are shaded gray in Table 1). Here I would 

like to add a few comments regarding the assumptions: stratification was aimed to be propor-

tional, however in a dictionary as small as PiotrSal the effects of rounding were no longer 

negligible as in larger dictionaries: e.g. letter F in PiotrSal covers 24 pages, L only 15. When 

taking a 10% sample both were represented by two pages. Therefore the allocation cannot be 

considered proportional any longer. Mind that calculations based on the assumption of pro-

portionality and on identical data yielded a 40.00 – 41.34 CI which translated into heavy bias. 

 

 
Figure 2. NKFD - “formal” labeling 

 

Mean number of entries per page, even though not without inconsistencies, presented fairly 

uniform distributions when compared with entry-based characteristics. In Figure 2 one can see 

the distribution of „formal‟ labels in NKFD; the least uniform characteristic in my data. Bars 

represent within-letter means, the gray dashed line represents the 95% confidence interval for 

simple random selection of pages (cluster sampling), the black fine dashed line the 95% 
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confidence interval for stratified selection of pages (stratified cluster sampling). Other figures 

presented herein will follow the same convention. Firstly, only three within-letter means (for 

C, D and M) fall within the CI for simple random selection of pages which is the wider one in 

this case. When we take the stratified CI into account this is satisfied only for letters C and D. 

Secondly, both CIs contain the true mean, as expected. Thirdly, the stratified CI is 

considerably narrower than the simple random CI (0.0063 vs 0.0215 as seen in Table 2, which 

translates into an increase in precision of slightly more than 340%). As I will show, this is true 

of any entry-based characteristic in large dictionaries. 

 

true 

mean 

min 

mean 

 

max 

mean 

 

max 

distance 

 

min 

distance 

 

simple random CI 

CI 

length stratified CI 

CI 

length 

Webster – “obsolete” 

labeling 0,1485 0,0058 Sup 0,2338 U 0,1427 Sup 0,0004 Q 0,1358 0,1616 0,0259 0,1449 0,1513 0,0063 

Webster – quotation 

provision 0,3309 0,0163 X 0,6164 W 0,3147 X 0,0029 E 0,3092 0,3771 0,0679 0,3204 0,3405 0,0201 

NKFD – equivalent 

disambiguators 0,6699 0,2683 X 1,0448 R 0,3749 R 0,0054 T 0,6015 0,7218 0,1203 0,6517 0,6850 0,0332 

NKFD – “formal” labeling 0,0658 0,0000 X 0,1583 I 0,0924 I 0,0005 D 0,0534 0,0749 0,0215 0,0622 0,0684 0,0063 

PiotrSal – equivalents 2,3765 1,6847 U 2,9447 F 0,6918 U 0,0062 O 2,1404 2,3855 0,2451 2,1712 2,5560 0,3848 

PiotrSal – “US” labeling 0,0239 0,0074 I 0,0408 K 0,0169 K 0,0000 T 0,0171 0,0306 0,0135 0,0095 0,0357 0,0262 

Table 2. Entry-based characteristics - a summary 

 

Figure 3. Webster - quotation provision 

 

„Formal‟ labeling displayed most glaring inconsistencies, but as already stated above other 

characteristics are very unevenly distributed as well. Quotation provision in Webster presents 

an interesting instance as it exhibits a substantial drop in the middle of the alphabet i.e. in a 

place supposedly ideal for sampling. I claim that this characteristic is predominantly 

dependent on lexicographers‟ modus operandi, therefore the distribution presented in Figure 3 

presents an excellent example against the myth that lexicographers settle to regular work 

mode by the time they reach this part of the alphabet. As in the previous case, randomization 

managed to cope with the variation in within-letter means. The simple random CI is 0.0679 

and encompasses only seven within-letter estimates. Here again, stratification translated into 

considerable increase in precision (again over 340%) and the stratified CI encompasses only 

two within-letter means, those for E and T.  
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An examination of other entry-based characteristics in large dictionaries i.e. in Webster and 

NKFD yielded very similar results. Details can be seen in Table 2. When it comes to 

„obsolete‟ labeling in Webster, it turned out that two letters contain almost no „obsolete‟ 

labels: X and the Supplement, the latter should not surprise. There are also stretches with 

considerable over-representation of „obsolete‟ labels: most glaring in U and Y, but prominent 

also in D, F and W. Here, as the distribution is a little bit more uniform, quite a lot of letters 

(11) fall within the simple random CI, but when we consider the much narrower stratified CI, 

this is true only for four letters (O, Q, S, T). In this particular case stratified CI is very narrow 

(0.0063, see Table 2) which translates into well over 400% increase in efficiency when 

compared to simple random selection of pages.  

 

The situation is very similar in the case of equivalent disambiguators in NKFD. As seen in 

Table 2, there are letters that over- or under-represent the dictionary content considerably. In 

R the maximum distance between within-letter and true means is attained but W and U follow 

suit when it comes to over-representation. M, N, O, Q and especially X, Y and Z fall 

considerably below the true mean. In this case, stratification also translated into an increase in 

efficiency, this time slightly over 360%. When we take the stratified CI into consideration it 

turns out that few one-stretch samples can compete with this estimate (B, C, P and T). 

 

This very lucid picture, speaking in favor of stratified sampling, gets a little blurred when we 

consider data from PiotrSal. This small dictionary presents a number of problems that might 

well be characteristic of a dictionary of this size. We have already seen that estimation of 

mean number of entries per page was not accurate. When dealing with entry-based 

characteristics I did not encounter this problem but in this case stratification did not generate 

better results than simple random selection of pages. As the reader may see in Table 2, 

stratified CI was one and a half times longer then simple random CI in the case of mean 

number of equivalents per entry and nearly two times longer in the case of „US‟ labeling. This 

would not be much of a problem itself but „US‟ labeling simple random estimate itself 

generates a very wide CI which covers 47.6% of the entire range of within-letter means 

(0.0074 in I to 0.0408 in K), which I doubt would satisfy any researcher. It is probably caused 

by both relatively small sample size, very uneven distribution (see Figure 4) and low 

frequency of labeling (only 31 labels in the sample).  

 
Figure 4. PiotrSal - “US” labeling 
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Despite its clearly unsatisfactory character, this estimate still, at least to me, presents an 

advantage over a one-stretch sample. Namely, it does issue a warning, clearly calling for more 

data. Point estimates derived from one-stretch samples can never do this. Moreover, as seen in 

Table 2 and Figure 4, both CIs are neatly symmetrical around the true mean which means that 

point estimation proved quite accurate, unlike many one-stretch samples.  

 

Those who examined Table 2 in greater detail must have noticed that in each case there is a 

letter that seems to estimate the dictionary total almost perfectly. True as it is, there is one 

major problem with these estimates: unpredictability. D, Q and T recur in the set of best one-

stretch estimates in various dictionaries but I would be rather inclined to say this is due to 

chance, at least I have no evidence and no intuition as to why it should not be due to chance. 

 

I suppose many researches would be inclined to use stratified sampling in their research. 

Therefore I would like to address one more issue: failure to randomize within strata. Coleman 

and Ogilvie (2009: 10f) investigated taking the first 10% and the first 50 entries under each 

letter and advocated using the latter method. As already observed, neither of these methods is 

random, therefore I decided to address this issue empirically. As my default sample size for 

random sampling is also 10%, it can be compared directly with the first 10% under each letter. 

However, 10% in my dictionaries is always more than 50 entries under each letter. Because I 

want to evaluate the effect of the methods of sample selection and not that of sample size 

apart from taking the first 50 entries under each letter, I will also take the first x entries with 

such an x that the total sample size be the same as in the case of random sampling (which is of 

course 10% of the whole dictionary text). For the „first 50‟ and „first x‟ methods I will 

estimate the overall mean using both arithmetic and weighted means as to investigate the bias 

resulting from disproportional representation of various letters.  

 

I have already raised my concern that allocating the same number of entries to each letter 

regardless of their original size will lead to over-representation of „smaller‟ letters and under-

representation of „bigger‟ letters. Intuitively, the latter seems more serious as bigger letters 

such as e.g. C or S seem more likely to exhibit more variation than smaller ones and therefore 

it would be advisable to allocate more entries to those letters. In fact, the so called Neymann 

allocation (cf. Barnett 1974: 94ff and Deming 1950: 226ff), which has been demonstrated to 

be optimal, consists in allocating sample size proportionally to within-stratum variation. It 

appears that the Coleman-Ogilvie method is doing exactly the reverse. Using weighted mean 

will obviously not eliminate the loss in precision resulting from non-optimal allocation; it 

will, however, eliminate the bias resulting from disproportional representation of different 

strata. What remains is the bias towards the beginning of each letter which is obviously 

unknown in general. 

 

Summary data for the Coleman-Ogilvie sampling can be found in Table 3. Estimates that fall 

outside the CI for stratified random sampling (as this was chosen as a natural point of 

reference) have been shaded gray. A cursory glance at Table 3 reveals that the majority of 

estimates were inaccurate. As I will show in a moment the picture is even bleaker than it 

might seem now. 
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true mean stratified CI First 50 

First 50 

weighted first x 

first x 

weighted First 10% 

Webster – “obsolete” 

labeling 0,1485 0,1449 0,1513 0,1274 0,1347 0,1450 0,1520 0,1354 

Webster – quotation 

provision 0,3309 0,3204 0,3405 0,2430 0,2352 0,3008 0,2983 0,3008 

NKFD – equivalent 

disambiguators 0,6699 0,6517 0,6850 0,6592 0,6948 0,6760 0,6333 0,5902 

NKFD – “formal” labeling 0,0658 0,0622 0,0684 0,0354 0,0357 0,0511 0,0488 0,0551 

PiotrSal – equivalents 2,3765 2,1712 2,5560 2,3692 2,4108 2,3213 2,3655 2,3766 

PiotrSal – “US” labeling 0,0239 0,0095 0,0357 0,0242 0,0259 0,0268 0,0302 0,0312 

Table 3. Coleman - Ogilvie (2009) sampling revisited 

 

In some cases („obsolete‟ labeling in Webster or mean number of equivalents per entry in 

PiotrSal) stratification alone managed to provide remarkably better estimates than single-

stretch sampling. With the former, all but one estimate are still outside the stratified CI but the 

distances from the true mean are not particularly large. 

 

With quotation provision in Webster, the bias towards the beginning of the letter results in 

considerable under-estimation of the mean number of quotations per entry. A quick glance at 

Figure 3 will make us realize that despite stratification the use of the „first 50‟ technique 

results in an estimate very close to that resulting from choosing the letter P i.e. one of the most 

serious under-estimates resulting from inaccurate choice of a one-stretch sample. Increase in 

sample size does help but still we are dealing with considerable under-estimation, this time 

erring in the region of the letter K. All those estimates fall outside the confidence interval for 

any random technique. 

 

Mean number of equivalent disambiguators in NKFD also shows that the methods proposed 

by Coleman and Ogilvie (2009) proved no doubt more accurate than single-stretch sampling. 

In this particular case „first x‟ unweighted mean turned out to be almost exactly the same as 

the true mean (0.6760 and 0.6699 respectively). It is interesting to note what happens if the 

two biases overlap: paradoxically the elimination of one source of bias (i.e. disproportional 

representation of different letters) resulted in a deterioration of estimates. 

 

Coleman – Ogilvie method sometimes yields unacceptable results: in the case of „formal‟ 

labeling it resulted in considerable underestimation. Here the difference between the best of 

these estimates and the true value is 0.107, and the estimator value in this case is almost 

identical with the within-letter mean in M. Table 3 also shows that these estimates fall outside 

the confidence interval for stratified random sampling. Obviously, one must bear in mind that 

„formal‟ labeling exhibits a great deal of variation and many of the one-stretch samples would 

yield graver errors in estimation. 

 

Finally, let me discuss PiotrSal. With mean number of equivalents per entry any sampling 

technique consisting of selecting some initial entries yielded almost ideal results regardless of 

sample size, allocation and estimator formula. It remains open to discussion whether this 

could be interpreted as a result of the relative uniformity of the distribution. 
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„US‟ labeling estimation in PiotrSal presents a very interesting instance of sample size in-

crease having a detrimental effect on estimation. What is particularly interesting in this case is 

that each successive method that potentially should have been better than the previous ones 

results in less and less accurate estimates. We can see it first with the elimination of bias re-

sulting from uneven allocation, then in sample size increase, and finally in changing allo-

cation to proportional. In this case all these methods provided estimates within the confidence 

interval for stratified sampling, which proved to be particularly broad for this characteristic. 

I would dare to draw only one conclusion based on the data presented above: Coleman – 

Ogilvie (2009) sampling presents a major improvement on single-stretch sampling. Beyond 

that it is impossible to make any generalizations. In some instances it proved accurate, as in 

estimating the mean number of equivalents per entry in PiotrSal; in others these methods 

yielded considerable but completely unpredictable bias. 

 

5. Conclusions 

 

The present research has aimed at exposing the pitfalls of one-stretch sampling commonly 

encountered in metalexicographic research and at examining random sampling techniques i.e. 

simple random and stratified selection of pages.  

 

The censuses performed revealed that the distributions were all far from uniform and very few 

within-letter means came close to the true value of the parameter. Therefore one-stretch 

sampling presents a considerable threat to reliability of inferences drawn.  

 

Simple random selection of pages produced, as expected, far more satisfying results in 

virtually all the cases. This can be, however, bettered by stratification in case of entry-based 

characteristics in larger dictionaries. Page-based characteristic, mean number of entries per 

page in this study, did not benefit from stratification. PiotrSal, a small dictionary presented a 

range of problems mostly connected with stratified sampling. Therefore my recommendation 

as for today would be to prefer simple random selection of pages in smaller dictionaries 

unless stratification is desired for other reasons.  

 

Empirical evaluation of sampling techniques proposed in Coleman – Ogilvie (2009) 

demonstrated that randomization within strata is also crucial. 

 

There are various limitations to the present study. First of all, it deals with estimating 

parameters in one dictionary only. Obviously, a researcher might be interested in comparing 

samples from several dictionaries. As already noted by Coleman and Ogilvie (2009: 5) the 

comparator text should encompass the same ranges in all the dictionaries being compared. 

Straightforward as it may seem, two questions remain unanswered: the treatment of 

differences in alphabetization and the choice of the dictionary to be randomized when the 

dictionaries differ in size considerably.  

 

Second of all, this study concerns paper dictionaries. When sampling an electronic dictionary, 

depending on the interface, it might well be possible to take a simple random sample in the 

case of entry-based characteristics. At the other end of the continuum, no headword list might 

be available. In such a case an external list of words e.g. taken out of a corpus will be needed. 

There will be cases, however, when this will not suffice, in particular in the case of 
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specialized lexicography e.g. slang or dialect dictionaries where suitable corpora are not 

available. 

 

My characteristics have all been very easily quantifiable, others obviously might not. Some 

might argue that when the interest is mostly qualitative and not quantitative, one can allow for 

less rigorous sampling scheme. I would take issue with this view. Even though not expressible 

in terms of means or other statistics, the picture would still be heavily biased. 
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